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Abstract

The problem of the propagation of longitudinal waves in a liquid-saturated porous medium when there are gas bubbles present is
considered. The decay factor and the phase velocity of Frenkel–Biot waves of the first and second kind are found as a function of the
frequency in the linear approximation. It is shown that, in the neighbourhood of the resonance frequency of the bubbles, longitudinal
Frenkel–Biot waves change their form. A wave of the first kind is transformed from a fast wave at low frequencies into a slow wave
at high frequencies. The dispersion curve of a wave of the second kind consists of two branches – a “low-frequency” branch, the
oscillations of which possess the classical properties, and a “high-frequency” branch, which is a weakly decaying high-velocity
mode. The frequency dependences of the ratio of the mass velocities of a gas-liquid mixture and of a porous matrix, and also of the
perturbations of the stress in the matrix and the pressure in the mixture, are constructed. It is shown that the “high-frequency” branch of
a wave of the second kind is characterized by the in phase motion of the gas-liquid mixture and of the porous matrix, while their mass
velocities are close, which explains the weak decay of this mode of oscillations. An analytical expression is obtained for the “boundary
frequency”, which determines the offset of the “high-frequency” branch of the dispersion curve of the wave of the second kind.
© 2006 Elsevier Ltd. All rights reserved.

Longitudinal Frenkel–Biot waves of two kinds can propagate in porous media1–3: a wave of the first kind, due
mainly to the compressibility of the intrapore filler and the material of the matrix, and a wave of the second kind, due
mainly to the deformation of the matrix (“a matrix wave”). Their characteristics are determined by the difference in
the densities and compressibilities of the component materials and the matrix.

A porous matrix can only be volume deformed if the saturating low-compressibility liquid is able to overflow in the
system of pores, thereby freeing space for overpacking. The Darcy viscous resistance leads to strong decay, and hence
a longitudinal Frenkel–Biot wave of the second kind corresponds to seismically observed waves in dry or almost dry
soils and rocks,4 where the viscous resistance of the gas (air) is negligible. In a medium completely saturated with
liquid, the observed seismic wave becomes a longitudinal wave of the first king (fast), while a wave of the second kind
can only propagate very short distances (due to the extremely strong decay). Consequently, it is logical to assume that
for any intermediate value of the gas saturation, either a change in the type of observed longitudinal Frenkel–Biot wave
occurs or one may simultaneously observe both types of longitudinal waves.4,5

In fact, in some publications6–8 quite peculiar experimentally recorded graphs of the wave velocities against the
frequency or other parameters of the medium have been presented, which can be interpreted as a transition from one

� Prikl. Mat. Mekh. Vol. 70, No. 2, pp. 282–294, 2006.
E-mail address: victor@ifz.ru (V.N. Nikolayevskii).

0021-8928/$ – see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2006.06.008

mailto:victor@ifz.ru
dx.doi.org/10.1016/j.jappmathmech.2006.06.008


252 S.Z. Dunin et al. / Journal of Applied Mathematics and Mechanics 70 (2006) 251–263

observed type of wave to another. A number of researchers have assumed that in saturated porous media5,9 or partially
saturated porous media3,10,11 different types of longitudinal Frenkel–Biot waves can propagate simultaneously.

The change in the behaviour of Frenkel–Biot waves of the first and second kind when gas bubbles are present has
been observed by Bedford and Stern12 and was then also investigated by other researches.13,14 However, no explanation
of the physical mechanism of the effect has been given. For example, it was stated directly in Ref. 12 that some of
the results obtained may be entirely related to features of the numerical method and, consequently, make no physical
sense.

In this paper we extend the investigation of the effect of a change in the behaviour of Frenkel–Biot waves when
there is resonance of the gas bubbles. The change in the wave characteristics is due to a change in the nature of the
motion of the liquid in the porous space when there are bubbles present. In fact, instead of overflow, which is necessary
to obtain a longitudinal Frenkel–Biot wave of the second kind, the liquid may be displaced into the volume released
when a bubble is compressed, allowing of the additional possibility of bulk deformation of the matrix. In this case the
oscillations of the porous matrix and of the bubbles occur in phase, and the decay of a wave of the second kind (due
to the reduction in the Darcy resistance) should be reduced considerably.

1. The equations of dynamics

Consider the propagation of longitudinal Frenkel–Biot waves in a liquid-saturated porous medium when there are
gas bubbles present.

Suppose the wave propagates along the x axis. We will assume that the saturating liquid contains a gas in the form
of identical isolated bubbles.

We will write the complete system of mass and momentum balance equations as follows:

(1.1)

We add to these equations the equation of the dynamics of a bubble15

(1.2)

The subscript 1 corresponds to the solid phase, the subscript 2 corresponds to the gas-liquid mixture, �i and vi are
the corresponding densities and mass velocities of the phases, �L is the density of the liquid without the gas bubbles,
�f �

f
xx is the effective Terzaghi stress,3 p is the pressure in the liquid, m is the porosity, k is the permeability, � is the

viscosity of the liquid without the bubbles, R is the bubble radius, pg is the gas pressure inside a bubble and ∂t = ∂/∂t
˜
,

∂x = ∂/∂x
˜
, ∂tt = ∂2/∂t2.

Note that, unlike the Rayleigh equation, which describes the oscillations of a single bubble in a viscous liquid, Eq.
(1.2) is supplemented by a second dissipative term, which includes the porosity and permeability, in order to take into
account the Darcy loss.

We will define the mean density of the gas-liquid mixture as

(1.3)

where � is the volume gas content and n0 = const is the number density of the bubbles. In the expression for the mean
density (1.3) we have neglected the density of the gas, which is quite justified for low gas contents. The change in � is
due to the change in the bubble radius R, while their number density is assumed to be constant.

We will also assume that the pore pressure p is equal to the pressure in the liquid far from the bubble.
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The system of equations is closed by the equations of state for the solid, liquid and gas phases, and also by the
constitutive relation for the matrix

(1.4)

Here � = 3�, � is the adiabatic exponent, Kb and �−1
1 are the moduli of volume elasticity of the porous matrix and of the

material which constitutes the matrix, G is the shear modulus of the matrix, e1 is the longitudinal strain of the matrix,
�L is the compressibility of the liquid and I1 is the first invariant of the effective stress tensor.

Thermal effects, the added mass and the change in the liquid viscosity due to the presence of bubbles are ignored.

2. The linear approximation

We will assume that when a wave propagates the parameters of the medium deviate only slightly from those of its
equilibrium state (we will denote the equilibrium parameters of the medium by a zero subscript):

System (1.1)–(1.4) can be reduced to the form

(2.1)

Here

where �0 is the resonance (Minnaert) frequency of a bubble in an unbounded liquid and u∗
1 is the displacement of the

i-th phase.
Below, in addition to the general case, we will also consider the case of “soft soil” (�1Kb � 1), when the last term in

the constitutive relation (the last equation of (2.1)) and the second term in the third equation of (2.1) can be neglected.
To investigate the characteristic features of the propagation of longitudinal Frenkel–Biot waves in porous media we

will seek a solution of system (2.1) in the form of a harmonic wave (the asterisk, which we placed on perturbations,
will henceforth be omitted)

(2.2)

where � is the frequency and 	 is the wave number.
Substituting expression (2.2) into system (2.1), we obtain a dispersion relation (the relation between the wave

number and the frequency), starting from the condition for the solution of the system to be non-trivial, i.e. from the
fact that the fifth-order determinant is equal to zero:

(2.3)
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where

Dispersion relations (2.3) can be represented as a quadratic equation

(2.4)

where

(2.5)

and �c is the critical Biot frequency, related to the presence of the viscosity of the saturating liquid or gas.2

In the general case of a porous medium, saturated with a liquid with bubbles, the coefficients M1, . . ., M4 depend
on the gas content �0 and the babble radius. These expressions are not given here in view of their length.

Dispersion Eq. (2.4) has already been investigated by a number of researchers, for example in Refs. 1,3,11, but
with simplifying assumptions. Thus, when there are no bubbles (�0 = 0 and M1 < 0, M2 > 0, M3 > 0 and M4 < 0) we can
obtain well-known expressions1,3,10 for the velocities of the fast and slow Frenkel–Biot waves. Another limiting case
is the case of bubbles in an unbounded liquid.16

Eq. (2.4) has two solutions corresponding to Frenkel–Biot waves of the first and second kind.

3. Analytical solution when there is no viscosity

To investigate the effect of bubbles on the velocity of waves in a saturated porous medium, we will consider the
special case when the saturating liquid is inviscid (� = 0). In this case it is possible to obtain a simple analytical
expression for the wave velocities. In fact, with this assumption, for the class of “soft soils” (�1Kb � 1), system (2.1)
reduces to a single equation, to which the following dispersion relation corresponds

(3.1)

where

We then have the following expression for the phase velocity

(3.2)
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In the limiting case of very low frequencies

(3.3)

The total compressibility �̄ now depends on the volume concentration of bubbles and the product �p0. For the
Frenkel–Biot theory (a saturated porous medium without bubbles, �0 = 0) the coefficient �̄ = �.

We will determine what type of wave each solution characterizes. We recall that when �0 = 0 it is generally accepted
to call the slow wave a wave of the second kind, and the fast wave a wave of the first kind. We will retain the name
“wave of the second kind” for a wave that is slow in the low-frequency region (� � �0), and we will call the fast wave
a wave of the “first kind”. Hence, solution (3.3) with a plus sign corresponds to a wave of the second kind, while the
solution with a minus sign corresponds to a wave of the first kind.

In the case of high frequencies, the phase velocities tend to other limit values

(3.4)

Now the plus sign in expression (3.4) corresponds to the fast wave, while the minus sign corresponds to the slow wave.
Hence, we can assume that at some frequency a cardinal change in the wave velocities has occurred – the initially faster
wave has become the slow wave while the slow wave has become the fast wave. Note that even for a low but finite
gas content the asymptotic values (3.3) and (3.4) of the phase velocities are in no way identical due to the difference
�̄ = �.

Before proceeding with the analysis, we will consider the limiting case, which has been well investigated, of a liquid
with bubbles (when there is no porous medium Kp = 0 and m0 = 1). The coefficients a6 and a3 will then be equal to
zero, and Eq. (3.1) will only have one root

(3.5)

It obviously follows from expression (3.5) that there are two branches of the oscillations – a “low-frequency” branch
(� < �0) and a “high-frequency” branch (� > �gL). The frequency range �0 < � < �gL corresponds to a non-transparency
window – in this frequency band when there is no viscosity the square of the phase velocity becomes negative and a
wave cannot propagate.

We will now return to our investigation of dispersion relation (3.1). We draw attention to the fact that the function
	 = 	(�) intersects the abscissa axis at two points: at zero frequency (� = 0) and at a frequency �g = a4/a1. The point
� = 0 is the origin of the low-frequency branch, while the point �g is the origin of the high-frequency branch

(3.6)

Unlike the case of a liquid with bubbles (the second relation of (3.5)) the boundary frequency now depends on the
porosity.

All the calculations presented below were carried out for the following parameters: the porosity m0 = 0.25,
the compressibility of the liquid �2 = 2 × 10−9 Pa−1, the compressibility of the material of the porous matrix
�1 = 2 × 10−10 Pa−1, the bulk modulus of elasticity of the porous matrix Kb = 5 × 107 Pa, the density of the liquid
�20 = 1000 kg/m3, the density of the material of the porous matrix �10 = 2500 kg/m3, the steady pressure p0 = 105 Pa,
the initial bubble radius R0 = 5×10−5 m, and the permeability k = 2 × 10−11 m2.

In Figs. 1 and 2 we show graphs of the phase velocity V of the Frenkel–Biot wave of the first kind (the dashed
curves) and of the second kind (the continuous curves), and also the wave number Re	 and the attenuation coefficient
� = −Im	 as a function of the normalized frequency � = �/�0 ignoring dissipation (� = 0) for a gas content �0 = 10−4

(curves 1) and �0 = 10−3 (curves 2).
The bubble phase (even at a low gas content) turns out to have a strong effect on the nature of the wave process,

namely the dispersion curve of the Frenkel–Biot wave of the second kind has two oscillation branches (Fig. 2) – a
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Fig. 1.

low-frequency branch when � < �0 and a high-frequency branch when � > �g (�g is the boundary frequency, beginning
from which the high-frequency branch of the oscillations appears, see formula (3.6)).

The “window of instability” of a wave of the second kind corresponds to the frequency band �0 < � < �g when there
is no dissipation: here the square of the wave number 	 is less than zero, while Im	 > 0 (Fig. 2). For a wave of the first
kind the decay factor � = 0 over the whole frequency range.

It is also important that, in the region of the resonance frequency of oscillations of the bubble radius, a change in the
wave characteristics occurs: the wave of the first kind becomes a slow wave and conversely the velocity of the wave of
the second kind increases considerably (compare with14).

The dynamics of waves in instability windows was investigated previously in Refs. 17–20, but using other
equations21,22 for a viscoelastic medium with oscillating solid fragments (granules).

Fig. 2.
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4. Numerical investigation of the dispersion curves taking viscosity into account

From the physical point of view, the high-frequency branch of the dispersion curve of a Frenkel–Biot wave of the
second kind is characterized by antiphase oscillations of the pressure in the liquid and of the bubble radius.13 We will
consider this problem in more detail.

We will introduce the effective compressibility �g of the bubbles,13 and the compressibility of the gas-liquid mixture
(Ug is the bubble volume)

(4.1)

Suppose the pressure in the liquid and the bubble radius vary harmonically [2.2]. Then, for a viscous liquid (� �= 0) it
follows from the first equation of (4.1) and the last equation of (2.1) that the compressibility of the gas is a complex
quantity

(4.2)

Then Im�g defines the phase difference between the variations of the pressure and the bubble radius.11

Graphs of the absolute value of the compressibility (|�g|) and of the phase difference �g against the normalized
frequency � = �/�0 are shown in Fig. 3 for � = 10−3 Pa. Whereas at low frequencies (� � �0) the change in the
pressure and in the bubble radius were in phase, at high frequencies (� � �0) they were out of phase (Fig. 3b); at
high frequencies, when the pressure in the liquid increases, the bubble expands, which also changes the oscillation
mode. It can be seen that at high frequencies the absolute value of the compressibility of the gas-liquid mixture (|��|)
approaches the compressibility of the liquid alone (Fig. 4a). On the graph of the frequency dependence of the phase
shift (��) of the variations of the density of the gas-liquid mixture and the pressure, the interval of out-of-phase
oscillations (Fig. 4b) corresponds to a transition zone between the low-frequency and high-frequency branches.

For the values of the parameters indicated in Section 3, we show in Figs. 5 and 6 graphs of the phase velocity V
of Frenkel–Biot waves of the first kind (the dashed curves) and of the second kind (the continuous curves) and of the
decay factor � = −Im	 against the normalized frequency � = �/�0, taking the dissipation into account (� = 10−3 Pa s)
for a gas content �0 = 10−4 (curves 1) and �0 = 10−3 (curves 2).

Fig. 3.
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Fig. 4.

As follows from the calculations, even at a low viscosity the instability of the Frenkel–Biot wave of the second kind
in the region �0 < � < �g is suppressed, and both its dispersion curves join up (Fig. 6a). It is important to emphasise
that the high-frequency branch of the dispersion curve of a wave of the second kind corresponds to rapidly propagating
and weakly decaying waves: it is precisely these oscillations which can be recorded experimentally (Fig. 6).

When there are bubbles present a wave of the first kind is transformed from a fast wave at low frequencies into
a slow wave at high frequencies (Fig. 5b), and its decay factor at low frequencies is much less (� < �0) than at high

Fig. 5.
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Fig. 6.

frequencies (� > �g). Maximum absorption of the energy of the wave occurs at the resonance frequency of the bubbles
(Fig. 5a).

We will consider the possibility of changing the type of relative motion of the gas-liquid mixture and the porous
matrix for Frenkel–Biot waves at the resonance frequency. As is well known,3 a wave of the first kind is characterized by
in phase motion of the liquid and of the porous matrix, while a wave of the second kind is characterized by out-of-phase
motion. If in the region of the resonance frequency of the oscillations of the bubble radius, a change in the phase shift
between the motion of the liquid and of the porous matrix occurs together with a change in the velocities and decay
of the waves (the in phase motion changes into out-of-phase motion and vice versa), we can speak of a change in the
type of relative motion in the Frenkel–Biot waves.

In the linear approximation, the system of Eqs. (1.1)–(1.4) enables us to calculate the ratio of the mass velocities
of the gas-liquid mixture v2 and the porous matrix v1, and also the ratio of the perturbations of the stress in the matrix
and the pressure in the gas-liquid mixture

The quanity Z is defined above (see formula (2.5)).
Unlike the previous calculations, we will henceforth consider a “cementized” geo material (Kb�1 ≈ 0.5), in which

the effective stresses are considerable. The remaining parameters of the problem are given in Section 3 and remain
unchanged; � = 10−3 Pa s and �0 = 10−4.

In Figs. 7 and 8 we show graphs of the absolute value of the ratio of the mass velocities v2/v1 of the gas-liquid
mixture and of the porous matrix, and also of the phase shift � between the displacements of the gas-liquid mixture
and the porous matrix (in degrees) against the normalized frequency � = �/�0 for Frenkel–Biot waves of the first kind
(the dashed curves) and of the second kind (the continuous curves).
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Fig. 7.

At low frequencies of the Frenkel–Biot wave of the second kind, the gas-liquid mixture and the porous medium
move out of phase (Fig. 7), but at frequencies exceeding �g, the out-of-phase motion changes into in phase motion
(which also explains the weak decay of the high-frequency branch.

Moreover, whereas at low frequencies the mass velocity (in absolute value) of the gas-liquid mixture v2 exceeds
the mass velocity of the porous matrix v1, at high frequencies their mass velocities are close to one another (Fig. 8b).

For a Frenkel–Biot wave of the first kind, the opposite situation is observed (Figs. 7 and 8a), namely, at high
frequencies the in phase motion changes to out-of-phase motion, and the mass velocity of the gas-liquid mixture
becomes ten times greater than the mass velocity of the porous matrix.

Fig. 9 enables us to follow the frequency dependence of the absolute value of the ratio of the perturbations of the
effective stress �f and the pressure p in Frenkel–Biot waves of the first kind (the dashed curves) and the second kind
(the continuous curves) for a gas content �o = 10−4. As previously, the normalized frequency � = �/�0 is used in the
graphs. Whereas at low frequencies of the wave of the first kind |�f| ∼ 0.6|p| (Fig. 9a), while in the case of the wave of

Fig. 8.
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Fig. 9.

the second kind |�f| ∼ 4|p|, in the high-frequency region the opposite situation is observed. Note that for a Frenkel–Biot
wave of the second kind (Fig. 9b) the maximum of the absolute value of the ratio of the perturbations of the effective
stress �f and the pressure p is reached at the resonance frequency of the bubbles, since at the resonance frequency of
the bubbles, due to the increase in the compressibility of the liquid, the pressure value falls sharply. The absolute value
of the ratio of the mass velocities v2/v1 is also high (|v2/v1| ≈ 250).

A Frenkel–Biot wave of the first kind, conversely, in the neighbourhood of the resonance frequency is characterized
by an increase in the pressure (|�f/p| ≈ 0.05, Fig. 9a).

Hence, at the resonance frequency of the bubbles, first, a change in the type of relative motion of the gas-liquid
mixture – porous matrix occurs in Frenkel–Biot waves of the first and second kinds (the in phase motion of the
porous matrix and the gas-liquid mixture changes into out-of-phase motion and vice versa). Second, the ratio of
the absolute values of the mass velocities of the gas-liquid mixture and of the porous matrix changes (whereas at
low frequencies displacements of the matrix predominate, at high frequencies the displacement of the gas-liquid
mixture will be greater and vice versa). As a consequence the ratio of the values of the effective stress �f and the
pressure p also changes. The Frenkel–Biot waves of the first and second kind “change their roles” in their action on
the matrix.

Note that, from the practical point of view, the wave with out-of-phase motion in the saturating liquid (or gas) –
porous matrix is important, since it is precisely the out-of-phase nature of the wave that enables the porous chan-
nels to be cleaned. The Frenkel–Biot wave of the second kind in the porous medium saturated with liquid without
gas bubbles is characterized by such an out-of-phase motion and a predominance of the effective stress over the
pressure.

However, as noted above, when bubbles are present in the region of the resonance frequency a change in the
Frenkel–Biot waves occurs. At high frequencies the out-of-phase motion is already present in the wave of the first
kind, and the effective stress exceeds the pressure (|�f| ∼ 1.4|p|). Simultaneously, its decay increases considerably.
The high-frequency branch of the dispersion curve of the Frenkel–Biot wave of the second kind is characterized by in
phase motion in the gas-liquid mixture – porous matrix.
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5. Conclusions

We have given a physical interpretation of the effect of the trans-formation of Frenkel–Biot waves of the first and
second kind when gas bubbles are present.

The change-over of the wave characteristics is due to a change in the compressibility of the gas-liquid mixture,
namely its sharp increase at the resonance frequency of the bubbles. Physically this means that whereas before resonance
the “fast” wave was due mainly to the compressibility of the gas-liquid mixture, at resonance it will be determined
mainly by the deformation of the porous matrix, since its compressibility becomes higher than the compressibility of
the gas-liquid mixture. Mathematically this corresponds to a change in the sign in the dispersion equation.

It has been shown that when gas bubbles are present in the saturated porous medium, the dispersion curve of the
Frenkel–Biot wave of the second kind consists of two branches – a “low-frequency” branch and a “high-frequency”
branch. These branches, when there is no dissipation, are separated by a non-transparency window – the band between
the resonance and boundary frequencies. The distinguishing feature of the high-frequency branch is the fact that it
describes rapidly propagating and weakly decaying waves: it is these oscillations that can be recorded experimentally.
The decay of such waves is less but the propagation velocity is higher than for a wave of the first kind. Conversely, at
frequencies exceeding the boundary frequency, the wave of the first kind is slowed down and its decay increases.

By an analytical investigation of the parameters of the waves when a porous medium is saturated with an inviscid
liquid with gas bubbles we have obtained expressions for the asymptotic values of the phase velocities of Frenkel–Biot
waves in the low-frequency and high-frequency limit, and also for the boundary frequency (the frequency, beginning
from which a high-frequency branch of the oscillations of the wave of the second kind appears).

By means of numerical calculations we have found that, in the neighbourhood of the resonance frequency, the
character of relative motion between the gas-liquid mixture and the porous matrix changes in both types of longitudinal
waves. As a consequence, the ratio of the values of the effective stress �f and the pressure p also changes. Waves of
the first and second kind “change roles” in their action on the matrix.
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